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Pulmonary MRI has had limited clinical use for patients 
with lung disease, especially when compared with ra-

diography, CT, and PET/CT. However, MRI has become 
practical in many countries due to advances in MRI pulse 
sequences, multicoil parallel imaging, and acceleration 
methods, along with the increased (but not universal) 
availability of postprocessing software. Recently, ultrashort 
echo time (UTE) and zero echo time proton MRI have 
extended the use of conventional or anatomic proton MRI 
for clinical examinations, and inhaled-gas methods have 
opened up avenues for functional lung imaging. The tran-
sition to MRI from radiography-based methods has been 
driven by the fact that MRI does not impart ionizing radia-
tion, which is particularly important in younger patients 
with chronic illness (eg, cystic fibrosis [CF]), for young and 
pregnant women, or for those patients requiring extensive 
longitudinal follow-up (eg, severe asthma).

The purpose of this Fleischner Society position paper 
is to familiarize our community with recent advances in 
pulmonary MRI and to provide a consensus expert opin-
ion regarding appropriate clinical indications for this mo-
dality. These opinions were initially endorsed in consensus 
among the writing committee members, following which 
the manuscript was endorsed by the Society members at 

large and was approved by the Fleischner Society Publi-
cation Development and Oversight Committee and the 
Fleischner Executive Committee before submission to 
Radiology.

Common clinical indications for pulmonary MRI were 
reviewed by members of the writing committee and have 
been divided into three groups: (a) group 1 indications 
are suggested for current clinical use of pulmonary MRI 
(four or more publications from multiple institutions with 
clinical studies of more than 100 patients); (b) group 2 in-
dications are promising but require further validation or 
regulatory approval (two to three publications with fewer 
than 100 patients, those that use methods requiring fur-
ther confirmation or regulatory approval, such as hyperpo-
larized gases); and (c) group 3 indications are appropriate 
for research investigations (clinical studies not meeting the 
above criteria or limited to preclinical research) (Table 1).

Background, Brief History of MRI of Lung, and 
Emergence of UTE and Zero Echo Time MRI 
Pulse Sequences
In the 1970s, Paul Lauterbur developed the first MRI 
scanner, for which he jointly received the 2003 No-
bel Prize in Medicine or Physiology with Peter Mansfield. 
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Pulmonary MRI provides structural and quantitative functional images of the lungs without ionizing radiation, but it has had limit-
ed clinical use due to low signal intensity from the lung parenchyma. The lack of radiation makes pulmonary MRI an ideal modal-
ity for pediatric examinations, pregnant women, and patients requiring serial and longitudinal follow-up. Fortunately, recent MRI 
techniques, including ultrashort echo time and zero echo time, are expanding clinical opportunities for pulmonary MRI. With the 
use of multicoil parallel acquisitions and acceleration methods, these techniques make pulmonary MRI practical for evaluating lung 
parenchymal and pulmonary vascular diseases. The purpose of this Fleischner Society position paper is to familiarize radiologists 
and other interested clinicians with these advances in pulmonary MRI and to stratify the Society recommendations for the clinical 
use of pulmonary MRI into three categories: (a) suggested for current clinical use, (b) promising but requiring further validation or 
regulatory approval, and (c) appropriate for research investigations. This position paper also provides recommendations for vendors 
and infrastructure, identifies methods for hypothesis-driven research, and suggests opportunities for prospective, randomized multi-
center trials to investigate and validate lung MRI methods.
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Much later, in 1996, Cutillo remarked that “lung imaging is 
a latecomer in magnetic resonance imaging” (1). The concep-
tual framework of the lung’s air and soft-tissue interfaces and 
its three-dimensional structure were investigated in the 1980s 
(2). The large difference in magnetic susceptibility between air 
and lung parenchyma results in broad frequency distributions 
and phase dispersion within voxels, causing an incoherent pro-
ton spectrum, noise after image reconstruction, and short T2* 
(3–6). Moreover, the gap in susceptibility between lung paren-
chyma and the chest wall manifests as a dark line perpendicular 
to the frequency-encoding direction. In 1991, the phenome-
non of susceptibility effects was described in detail, and poten-
tial solutions were proposed using projection reconstruction 
MRI with UTE (7–9). But this solution required more than 
2 decades of hardware and software improvements before suc-
cessful clinical implementation was possible (10–12). Clinical 
MRI of the lung has since been pursued using spin-echo (SE) 
and gradient-echo (GRE) sequences with short echo time and 
half-Fourier single-shot fast SE sequences (13–15). MRI of the 
pulmonary vasculature is possible using electrocardiographic 
gating, surface coils, and cine GRE MRI (16,17).

In 1994, ventilation MRI using hyperpolarized xenon 129 
(129Xe) was first reported in small animals (18). In 1996, hy-
perpolarized helium 3 (3He) MRI was pioneered in healthy 
volunteers and participants with lung disease (19,20), and con-
trast material–enhanced perfusion MRI emerged (21). This was 
followed by reports using perfusion parametric mapping with 
three-dimensional imaging and breath holding (22–24). Dy-
namic oxygen-enhanced proton ventilation MRI was also intro-
duced and shown to be highly correlated with measurements of 
the diffusing capacity of the lung for carbon monoxide (25–27). 
In 2009, unenhanced perfusion and ventilation proton MRI us-
ing Fourier decomposition were pioneered (28).

Despite these advancements in the field of pulmonary func-
tional imaging, there has been limited clinical utilization of 
pulmonary MRI, primarily due to the benefits provided by high-
resolution CT, which include speed, availability, familiarity, ease 

of access, and superb natural contrast and spatial resolution of 
the lung parenchyma. In contradistinction to CT, pulmonary 
MRI has a longer acquisition time with sensitivity to respira-
tory motion and is affected by the lung’s lower proton density 
and aforementioned susceptibility effects from air and soft-tissue 
interfaces.

Nevertheless, pulmonary MRI is poised to become a primary 
clinical imaging modality due to the development of UTE and 
zero echo time sequences, which have been “game changers” for 
pulmonary MRI. These sequences provide a higher signal-to-
noise ratio from the lung’s relatively short T2*. Their evolution, 
from longer to shorter echo times, is described in Figure 1 and 
explained in detail in Appendix E1 (online).

Clinical Indications for Pulmonary MRI

Data Support Current Clinical Application (Suggested for 
Current Clinical Use)

Evaluation of CF.—CF manifests with pulmonary pathologic 
findings from birth. Pulmonary MRI can demonstrate the 
presence of bronchiectasis and mucus plugging in CF, but im-
aging is challenging because of the great range in patient age as 
well as disease severity in this population, due to the different 
classes of CF transmembrane conductance regulator mutations 
and exogenous factors such as bacterial colonization. These 
variations in CF result in different degrees of disease severity, 
but therapeutic agents, including modulators and potentiators, 
may extend life expectancy for individuals with CF.

To our knowledge, only in Germany has proton MRI been 
introduced into the routine clinical management and long-term 
monitoring of patients with CF as the standard of care. Similar 
to CT, proton MRI provides morphologic information with 
respect to mucus distribution, bronchiectasis, inflammatory 
airway wall thickening, consolidation, and atelectasis, and it 
depicts disease activity from birth (29–31) (Fig 2). Inspiratory 
and expiratory three-dimensional GRE MRI reveals air trap-
ping (32) as a low spatial resolution radiation-free alternative to 
inspiratory and expiratory CT, although steady-state free pre-
cession methods can be used to distinguish mucus from airway 
wall thickening (33). An MRI scoring system, similar to CT 
scoring systems, may help grade disease severity (34). MRI can 
also reveal perfusion abnormalities caused by hypoxic pulmo-
nary vasoconstriction with high sensitivity that reflects ventila-
tion impairment due to airway obstruction (Euler-Liljestrand 
reflex) (35). MRI perfusion defects can reveal even a small air-
way (,1 mm in diameter) obstruction, which is difficult if not 
impossible to detect using CT. For example, CT demonstrated 
only 20% of potentially detectable perfusion abnormalities in 
young patients with CF (30). In addition, MRI perfusion de-
fects correlated with the multiple breath wash-out lung clear-
ance index measurement in young children and adolescents 
(36). Also, two single-center studies showed that mucus plug-
ging, consolidation, and perfusion abnormalities were increased 
in pulmonary exacerbations of CF and reversed after antibi-
otic therapy (30,36,37). A multicenter MRI study in young 
children with CF also showed that lung clearance index values 

Abbreviations
CF = cystic fibrosis, CI = confidence interval, COPD = chronic obstruc-
tive pulmonary disease, DW = diffusion weighted, FDG = fluorine 18 
fluorodeoxyglucose, GRE = gradient echo, NSCLC = non–small cell 
lung cancer, SE = spin echo, UTE = ultrashort echo time

Summary
Due to technical advances in pulmonary MRI, the Fleischner Society 
offers its consensus recommendations for the clinical use of MRI in 
evaluating patients with common lung disorders.

Key Results
 n Ultrashort echo time and zero echo time pulse sequences have im-

proved pulmonary MRI, thus allowing expanded clinical applica-
tions, such as the serial imaging of children with cystic fibrosis.

 n Current recommendations for the clinical use of pulmonary MRI 
are offered as three categories: (a) for current clinical use, (b) 
promising but require further validation or regulatory approval, 
and (c) appropriate for research investigations.

 n Opportunities for prospective, randomized multicenter trials to 
investigate pulmonary MRI methods are suggested.
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Lung Imaging Reporting and Data System category. All eight 
cancers were accurately depicted with MRI. The Lung Im-
aging Reporting and Data System score was overestimated 
with MRI in one patient for category 4A, two patients for 
category 3, and five patients for category 2 nodules. The authors 
concluded that MRI was comparable to low-dose CT in a lung 
cancer screening program (56). The use of UTE pulse sequences 
has improved the detection of small lung nodules at MRI (57). 
This free-breathing method allows for the better delineation of 
lung parenchymal structure than routine breath-hold GRE tech-
niques (57).

After detection, characterizing the potential for malignancy is 
pivotal. Numerous MRI sequences have been evaluated for pulmo-
nary nodule characterization (58). Currently, diffusion-weighted 
(DW) MRI is considered the most useful, with a meta-analysis 
pooled sensitivity and specificity of 83% and 80%, respectively, 
in the differentiation between malignant and benign lesions (59). 
Some studies have shown that dynamic contrast-enhanced MRI 
has greater specificity and accuracy than PET/CT (60,61) (Fig 
3). When DW MRI and fluorine 18 fluorodeoxyglucose (FDG) 
PET/CT were compared in a meta-analysis for diagnosis of the 
same nodule, DW MRI yielded an area under the receiver 
operating characteristic curve of 0.93 (95% confidence interval 
[CI]: 0.90, 0.95) versus 0.86 (95% CI: 0.83, 0.89) for FDG PET/
CT (P = .001). This meta-analysis also showed a diagnostic odds 
ratio of 50 (95% CI: 19, 132) for DW MRI, which was superior 
to that of PET/CT (odds ratio = 15; 95% CI: 7, 32; P = .006) 
(62). Thus, current data show that DW MRI outperforms FDG 
PET/CT in the characterization of solitary pulmonary nodules.

Currently, CT and FDG PET/CT are used for lung cancer 
staging (tumor, node, metastasis or TNM system), and MRI is 
rarely employed, and typically only for selected problem solv-
ing. Although MRI had originally been proposed as superior 
to CT for T factor evaluations (63–66), short inversion time 
inversion-recovery turbo SE MRI and/or DW MRI are as help-
ful as PET/CT for N factor evaluation in non–small cell lung 
cancer (NSCLC) (67–79). Short inversion time inversion-recov-
ery turbo SE MRI is also more sensitive and accurate than DW 
MRI and PET/CT (75). When both MRI and PET/CT data 
are available, inclusive criteria (positive for nodal metastasis ei-
ther at MRI or at PET/CT) improve the sensitivity for detecting 
nodal metastasis compared with PET/CT alone, and they may 
decrease unnecessary open thoracotomy, mediastinoscopy, or 
endobronchial US (80). Another meta-analysis identified better 
diagnostic performance for MRI compared with FDG PET/CT 

had a moderate 
to strong cor-
relation with 
the MRI scores 
(38).

Hyperpolar-
ized gas MRI 
with 3He reveals 
ventilation ab-
normalities with 
a high sensitivity 
in patients with 
CF (39,40) who have normal spirometry and normal CT (41). 
Quantification of ventilation defects is feasible and may be use-
ful for monitoring therapy effectiveness (42). This, in combi-
nation with the fact that hyperpolarized 3He is more sensitive 
to lung function decline than pulmonary function tests(43), 
highlights its value in helping detect very early lung disease. 
Preliminary therapy studies using hyperpolarized 3He ventila-
tion as an end point showed response to a CF transmembrane 
conductance regulator gene potentiator in parallel with changes 
in forced expiratory volume in 1 second (39), but very few stud-
ies support MRI use in very young children, to our knowledge 
(44). MRI with hyperpolarized 129Xe is less costly than hyperpo-
larized 3He and shows promise for clinical use in specialist CF 
centers (37,45–48), including evaluation of treatment responses 
and correlation with pulmonary function measurements such as 
lung clearance index. Unenhanced MRI methods for perfusion 
and/or ventilation imaging (eg, arterial spin labeling, echo time–
dependent mapping of T1 relaxation times, and Fourier decom-
position MRI) also provide alternatives for CF lung ventilation 
and perfusion measurements (49–51). The next area of research 
will need to focus on how MRI results change patient outcomes 
(eg, life expectancy, hospitalization length of stay, cost of care) 
compared with CT and its cost effectiveness.

In conclusion, proton-based pulmonary MRI for longitudi-
nal assessment of patients with CF is the current clinical stan-
dard in Germany, and data support its more widespread use in 
patients with CF. The use of hyperpolarized gas remains an im-
portant research tool, awaiting regulatory approval for clinical 
use beyond the United Kingdom.

Lung cancer and lung nodule characterization.—Early lung 
cancer detection and pulmonary nodule characterization are 
important challenges for radiology. Although CT serves as the 
clinical workhorse, MRI plays a role in specific clinical scenar-
ios. Various MRI techniques, such as SE sequences, including 
short inversion time inversion recovery, turbo SE sequence, and 
GRE sequences, yield detection rates ranging from 26% to 96% 
(52–55). Recently, three-dimensional GRE sequences with UTE 
(echo time, less than 200 msec) enabled a detection rate of greater 
than 90% for nonsolid, part-solid, and solid nodules ranging 
from 4 to 29 mm in diameter, thus challenging thin-section 
CT in nodule detection (54). In a recent study, the potential 
of MRI as a screening tool for lung cancer was compared with 
low-dose CT (56) for 224 lung cancer screening participants 
with nodules of 4 mm or greater; patients were then assigned a 

Table 1: Summary of Clinical Indications for Pulmonary MRI

Data Support Current Clinical  
Application

Data Promising: Further Validation  
or Regulatory Approval Required Investigational

Cystic fibrosis Pulmonary embolism Chronic obstructive pulmonary disease
Lung cancer staging Pulmonary parenchymal abnormalities
Lung nodule characterization Asthma
Pulmonary hypertension Lung nodule detection Interstitial lung disease
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brain and hepatic metastases, 
PET/CT is more useful for 
the detection of lymph node 
and soft-tissue metastases (81). 
Currently, lung cancer staging 
may use both brain MRI and 
whole-body PET/CT. With 
available whole-body MRI data, 
the coregistered PET/MRI may 
serve as a staging tool. NSCLC 
was correctly upstaged in 37 of 
143 patients (26%) in the PET/
MRI group compared with 26 
of 120 patients (22%) in the 
PET/CT plus brain MRI group 
(95% CI: –6%, 15%; P = .43), 
which was an insignificant dif-
ference (82). Integrated (simul-
taneous, rather than registered) 
PET/MRI can also be used as a 
possible adjunct to FDG PET/
CT for clinical NSCLC staging 
with comparable staging perfor-
mance (83,84).

In conclusion, studies sup-
port the utility of MRI for the 
characterization of known lung 
nodules and lung cancer staging 
as potential alternatives to PET/
CT. Although UTE results are 
promising for lung nodule de-
tection, confirmatory studies are 
required.

Pulmonary hypertension.—The 
European Society of Cardiol-
ogy and European Respiratory 
Society issued a recent consen-
sus statement on the diagnosis 
and treatment of pulmonary 
hypertension (85,86). Dynamic 
contrast-enhanced lung perfu-
sion MRI has similar sensitivity 
and specificity to both planar 
scintigraphy (87) and SPECT 
(88) in its ability to screen for 
chronic thromboembolic pul-
monary hypertension. The right 
ventricle is not well designed for 

acute pressure overload and decompensates into cor pulmonale 
after exposure to chronic pressure (and/or volume) overload (89). 
The findings of septal flattening, delayed contrast enhancement 
of the septal insertions, and an elevation in the right ventricular 
end diastolic volume index have prognostic value in pulmonary 
hypertension (90–93). Quantitative contrast-enhanced MR an-
giography is useful for the assessment of the severity of pulmo-
nary hypertension and the longitudinal assessment of therapy ef-

on a per-node and per-patient basis (79). Thus, the current evi-
dence supports the broader clinical use of MRI for TNM staging 
in patients with NSCLC (Fig 4). Tables 2 and 3 show reported 
diagnostic performances of dedicated MRI for T and N factor 
assessments in patients with NSCLC.

Whole-body MRI also provides acceptable accuracy and ef-
ficacy for NSCLC staging compared with whole-body PET/
CT. Although whole-body MRI is more useful for depicting 

Figure 1: Diagram illustrates the race toward shorter echo time (TE) values. The evolution of echo times has involved 
regular MRI pulse sequences with, A–C, short TE setting, followed by, D, E, specially designed ultrashort echo time and, 
F, zero echo time sequences. Echo time is defined as time between excitation of magnetization and sampling of central 
k-space region. With typical MRI hardware, a minimum amount of time is required to switch between radiofrequency (RF) 
transmission (radiofrequency pulses) and radiofrequency reception (readout window), called D here and depicted greatly 
exaggerated in C–F. D can be a limiting factor in how small echo times can get, and a D of 5 msec might be considered 
typical. Due to finite width of radiofrequency pulse and of D, a central region in k-space cannot be sampled by zero echo 
time pulse sequences; this is depicted in F using a small silvery sphere at origin of radial pattern. GRE = gradient echo, PF = 
partial Fourier, PR = projection reconstruction, 3D = three-dimensional.
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of the smaller pulmonary ar-
terial branches. Bright-blood, 
steady-state free precession 
imaging can also be used to de-
lineate thrombus in the major 
pulmonary vessels in patients 
with chronic thromboembolic 
pulmonary hypertension (97) 
and to reveal decreased flow in 
the pulmonary artery due to 
pulmonary hypertension (98). 
The distensibility (relative area 
change) in the pulmonary ar-
tery is predictive of outcomes in 
patients with pulmonary hyper-
tension (97,99), while the right 
ventricular end diastolic volume 
index and pulmonary artery 
area predict survival (100), as 
confirmed with meta-analysis 
(101).

In conclusion, strong evi-
dence supports the current 
clinical use of cardiopulmonary 
MRI in patients with pulmo-
nary hypertension.

Data Promising but Requiring 
Further Validation or 
Regulatory Approval

Pulmonary embolism.—Since 
2004, pulmonary contrast-
enhanced MR angiography has 
revealed both the direct signs 
of pulmonary embolism within 
pulmonary arteries and lung 
perfusion using parallel imag-
ing techniques, time-resolved, 
or four-dimensional contrast-
enhanced MR angiography (Fig 
E2 [online]) (102,103). This 
technique can be considered as 
an alternative to CT angiogra-
phy for patients presenting with 
signs and symptoms of pulmo-
nary embolism. In the clinical 
setting of suspected pulmonary 
embolism, single-center results 
for the primary use of MR an-
giography for the diagnosis of 
pulmonary embolism in 675 
patients at low to intermediate 

risk showed patient outcomes using MR angiography as the pri-
mary diagnostic test were similar to CT angiography at 6 months 
of follow-up (104). Important technical developments since the 
Prospective Investigation of Pulmonary Embolism Diagnosis III 

fect (24,94–96) (Fig 5) (Table E1 [online]). Contrast-enhanced 
MR angiography has been used in the setting of chronic throm-
boembolic pulmonary hypertension for the diagnosis of proximal 
arterial enlargement, webs of chronic thrombi, and amputation 

Figure 2: Typical constellation of imaging findings in an adolescent female patient with cystic fibrosis. A, Contrast-
enhanced T1-weighted image shows mucus-filled bronchoceles (arrow) dominant in upper lobes and superior segments 
of lower lobes. B, Fat-saturated T2-weighted image best depicts mucus plugging (arrow). C, Maximum intensity projection 
of contrast-enhanced T1-weighted imaging shows tree-in-bud pattern of small airways disease (circles). D, Contrast-
enhanced T1-weighted imaging may help differentiate airway wall inflammation (anterior black arrowhead) from mucus 
(posterior black arrowhead) by different signal intensities. E, Subtraction map from dynamic contrast-enhanced MR perfu-
sion reveals perfusion abnormalities (arrowheads). F, Contrast-enhanced MR angiography shows dilated bronchial arteries 
(arrowhead).
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Figure 4: Images in 74-year-old man with lung cancer and right hilar and subcarinal lymph node metastases. Fluorine 18 fluorodeoxyglucose (FDG) PET/CT scan 
(left), short inversion time inversion-recovery turbo fast spin-echo image obtained with a 3-T system (middle), and diffusion-weighted (DW) image obtained with a fast spin-
echo sequence from same system (right). PET/CT scan shows high uptake of FDG at right hilar (thin arrow) and subcarinal (thick arrow) lymph nodes. Short inversion time 
inversion-recovery fast spin-echo image demonstrates right hilar (thin arrow) and subcarinal (thick arrow) lymph nodes as areas of high signal intensity, although DW image 
shows only subcarinal lymph node (thick arrow) as high signal intensity and cannot visualize right hilar lymph node as high signal intensity (thin arrow). All methods could en-
able accurate diagnosis of N stage in this patient. In addition, PET/CT and short inversion time inversion-recovery fast spin-echo imaging could enable accurate diagnosis 
of lymph node metastases on a per-node basis. DW imaging could accurately depict subcarinal lymph node metastasis, but right hilar lymph node was determined to be a 
false-negative finding.

Figure 3: Images in 82-year-old man with invasive adenocarcinoma in right upper lobe. A, Thin-section CT scan with 1-mm-thick sections (left), pulmonary MRI scan 
with ultrashort echo time at 110 msec and 1-mm-thick sections (middle), and fluorine 18 fluorodeoxyglucose (FDG) PET/CT scan with 2.5-mm-thick sections (right). CT 
and MRI scans show solid nodule with notch. This nodule demonstrates high FDG uptake on PET/CT scan. CT and MRI scans also show bullae and emphysematous lung 
surrounding tumor. B, Dynamic first-pass contrast material–enhanced perfusion gradient-echo MRI scans obtained with a 3-T system demonstrate well-enhanced nodule 
(arrows) in right upper lobe. This nodule shows enhancement from lung parenchymal phase and is well enhanced at systemic circulation phase. t is the time after injection of 
gadolinium-based contrast agent followed by saline chaser.
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in improved interpolated resolution (0.7 3 0.7 3 1.0 mm vs 0.5 
3 0.7 3 1.5 mm in Prospective Investigation of Pulmonary Em-

study have improved the resolution and image quality of the MRI 
examinations (105). Advances in scanner hardware have resulted 

Table 2: Reported Diagnostic Performances of T Factor at MRI as Compared with CT

Study Year
Field Strength 
(T) Sequence Image Analysis

MRI Accuracy 
(%) 

CT Accuracy 
(%)

Webb et al (63) 1991 0.3 + 1.5 ECG-gated T1-and T2-weighted Distinction between stage T0–
T2 and T3–T4

73 78

Sakai et al (64) 1997 1.5 Free-breathing cine-GRASS Chest wall invasion 76 68
Ohno et al (65) 2001 1.5 Dynamic ECG-triggered 3D GRE Tumor invasion of pulmonary 

vessels
75–88 68–71

Tang et al (66) 2015 3.0 Breath-hold dynamic CE 2D GRE T stage 82.2 84.4

Note.—CE = contrast enhanced, ECG = electrocardiogram, GRASS = gradient-recalled acquisition in the steady state, GRE = gradient 
recalled echo, 3D = three-dimensional, 2D = two-dimensional.

Table 3: Diagnostic Performance of N Factor of the TNM Staging System for MRI, CT, and FDG PET/CT

Study Year
Field 
Strength (T) Sequence

Reference  
Standard MRI Accuracy (%) CT Accuracy (%)

PET/CT  
Accuracy (%)

Takenaka et al 
(67)

2002 1.5 ECG-triggered  
T1-weighted TSE, 
STIR

Histologic findings 83 (T1WI),  
96 (STIR)

83 NA

Ohno et al 
(68)

2004 1.5 STIR Histologic findings 89 72 NA

Ohno et al 
(69)

2007 1.5 STIR Histologic findings 
and/or follow-up

87.8 (qualitative),  
92.2 (quantitative)

82.6 (qualitative), 
83.5  
(quantitative)

NA

Hasegawa et al 
(70)

2008 1.5 DWI Histologic findings 95 NA NA

Nomori et al 
(71)

2008 1.5 DWI Histologic findings 
and/or follow-up

98 NA 96

Morikawa et al 
(72)

2009 1.5 STIR Histologic findings 84.7 (qualitative),  
84.7 (quantitative)

NA 80.3

Nakayama et 
al (73)

2010 1.5 DWI Histologic findings 94 NA NA

Usuda et al 
(74)

2011 1.5 T1-weighted SE,  
T2-weighted FSE, 
SS EPI SPAIR

Histologic findings 81 NA 71

Ohno et al 
(75)

2011 1.5 STIR, DWI Histologic findings 84.4 (qualitative 
STIR), 82.8  
(qualitative 
DWI),86.8  
(quantitative STIR), 
84.4 (quantitative 
DWI)

NA 83.6 (qualitative), 
85.6  
(quantitative)

Ohno et al 
(76)

2015 3 STIR FASE, EPI 
DWI, FASE  
DWI

Histologic findings 84.2 (STIR FASE), 
76.8 (EPI DWI), 
83.2 (FASE DWI)

NA 73.7

Usuda (77) 2015 1.5 SE T1-weighted,  
FSE T2-weighted, 
DWI

Histologic findings 
and/or follow-up

91 NA 48

Nomori (78) 2016 1.5 DWI Histologic findings 75 NA 67
Peerlings et al 

(79)
2016 Mainly 1.5 DWI and STIR Meta-analysis NA NA NA

Note.—DWI = diffusion weighted imaging, ECG = electrocardiogram, EPI = echo-planar imaging, FASE = fast-advantage spin echo, FDG 
= fluorine 18 fluorodeoxyglucose, FSE = fast spin echo, NA = not applicable, SE = spin echo, SS = single shot, SPAIR = spectral attenuated 
inversion recovery, STIR = short inversion time inversion recovery.
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visualizing reticular opacity, emphysema, and bullae (109). 
Three-dimensional GRE with UTE is equally useful com-
pared with thin-section CT for lung nodule detection and 
characterization (Figs 6–8) (54,110). Another application 
of this technique is the quantitative regional T2* measure-
ment of the lung by direct T2* decay at three-dimensional 
GRE with UTEs for the assessment of lung microstructure 
and emphysema (111).

In conclusion, several studies suggest MRI may be com-
parable to CT in the detection of lung nodules, ground-glass 
opacity, consolidation, honeycombing, traction bronchiectasis, 
and reticular changes. However, the limited availability and 
investigational status of UTE proton pulse sequences have cur-
tailed clinical adoption. Evidence from multicenter clinical tri-
als is required for validation.

Investigational (Appropriate for Research Investigations and 
Mechanistic and Hypothesis-driven Research in Patients or 
Preclinical Studies)

Chronic obstructive pulmonary disease.—Chronic obstruc-
tive pulmonary disease (COPD) is the most common chronic 
respiratory illness in the world, and it is increasing in preva-
lence with decidedly poor prognosis and outcomes. Pulmonary 
function tests and CT currently serve as the established clinical 
tools for COPD evaluations and large-scale multicenter stud-

bolism Diagnosis III), increased number of slices (140–160 vs 44 
[101]), and a lower repetition time (2.9 msec vs 6.6 msec). The 
software changes also include the use of an auto calibrating k-space 
two-dimensional scheme for three-dimensional acquisition (106).

In conclusion, single-center data (n = 675) have shown that 
pulmonary MR angiography is similar to CT angiography for 
the primary evaluation of suspected pulmonary embolism. Con-
firmatory prospective, multicenter, outcomes-based trials com-
paring pulmonary MR angiography and CT angiography are 
needed.

Pulmonary parenchymal abnormalities.—Since 2000, ad-
vancements in MRI gradient systems and pulse sequences 
enabled the evaluation of lung parenchyma by using sin-
gle-shot fast or turbo spin echo with and without half-
Fourier acquisition, balanced steady-state free precession, 
and three-dimensional GRE with UTE less than 200 msec 
(12,15,107–109). These techniques can increase the signal-
to-noise ratio within the lung parenchyma (15). Steady-
state free precession and three-dimensional GRE with UTE 
emerged for visualization of lung parenchymal structures in 
the 2010s (12,107–109). When compared with CT, three-
dimensional GRE with UTE showed almost perfect agree-
ment for imaging lung nodules or masses, ground-glass 
opacity, patchy opacity and consolidation, honeycombing 
and traction bronchiectasis, and substantial agreement in 

Figure 6: Images in 82-year-old man with solid nodules in lung apices. Pulmonary MRI scan with ultrashort echo time at 192 msec (left) and thin-section CT scans with 
1-mm-thick sections (center and right) show solid nodules (arrows) in the apices. Nodule diameters were 19 mm and 25 mm on MRI scan and 19 mm and 26 mm on thin-
section CT scan. These nodules were diagnosed as invasive adenocarcinoma in right apex and squamous cell carcinoma in left apex.

Figure 5: Images in 42-year-old woman with chronic pulmonary arterial hypertension from an atrial septal defect with pulmonary insufficiency. A, Coronal MR angio-
gram shows an enlarged pulmonary artery (arrow). B, Four-dimensional flow systolic phase pathlines from emitter plane at pulmonary valve shows rapid flow in red at the 
pulmonary trunk and turbulent (helical) flows in right and left (arrow) pulmonary arteries. C, Four-dimensional flow in diastolic phase shows lower velocity pulmonary insuf-
ficiency path lines in blue (arrow) from same emitter plane at pulmonary valve, with calculated regurgitant fraction of 28%.
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sensitivity of MRI to COPD abnormalities. In a larger COPD 
cohort study, hyperpolarized helium MRI apparent diffusion co-
efficient values were used to explain ventilation improvements 
after bronchodilator treatment (118). Moreover, in a compari-
son of CT, pulmonary function tests, and hyperpolarized helium 
MRI in a larger COPD cohort, only hyperpolarized helium 
MRI enabled the prediction of exacerbations in patients with 
mild to moderate COPD without previous exacerbations (119). 
Time-resolved hyperpolarized helium MRI was also exploited to 
directly visualize collateral ventilation in a small group (four of 
10) of patients with COPD (120). DW hyperpolarized helium 
MRI has also helped detect subclinical emphysema in healthy 
smokers (121,122) with high sensitivity, although hyperpolar-
ized xenon MRI b value acquisition methods can quantify mean 
alveolar dimensions in COPD (123) (Fig 9).

Quantitative perfusion MRI has also been employed in pa-
tients with COPD with correlation to CT and pulmonary func-
tion tests (124–128). In 144 participants, pulmonary microvas-
cular blood flow was reduced in mild COPD compared with 
control participants who were smokers, independent of small 
airway disease at CT and gas trapping at pulmonary function 

ies (112). Several smaller COPD studies have employed MRI 
methods.

The first large-scale multi-institutional study involved a col-
laboration with the United Kingdom, Germany, and Denmark, 
the Polarized Helium Imaging of the Lung study (113). This pro-
spective study compared hyperpolarized helium MRI and CT in 
nearly 200 patients with COPD and never-smokers. Using pul-
monary function tests as a reference, regional analysis of hyper-
polarized helium MRI and thin-section CT correctly categorized 
healthy volunteers in 100% and 97% and COPD in 42% and 
69%, respectively. The apparent diffusion coefficients of hyper-
polarized helium MRI better correlate with diffusing capacity of 
the lung for carbon monoxide than CT lung density (r = 0.59 
vs r = 0.29) (113). The first evidence of hyperpolarized helium 
MRI utility in COPD was provided much earlier (114,115), 
and these findings opened the door to larger studies in patients 
and in those exposed to secondhand smoke (116). In one pilot 
hyperpolarized helium MRI study, increased ventilation defects 
and apparent diffusion coefficients were detected during a 2-year 
period in patients with COPD in whom forced expiratory vol-
ume in 1 second remained unchanged (117), underscoring the 

Figure 7: Images in 74-year-old man with solid lung nodule. Pulmonary MRI scan obtained with ultrashort echo time at 110 msec (left) and  
thin-section CT scan obtained with 1-mm-thick sections (right) show solid nodule in left lower lobe (arrows). The nodule measures 14 mm on MRI scan and 
15 mm on thin-section CT scan. This nodule was diagnosed as invasive adenocarcinoma.

Figure 8: Images in 72-year-old man with usual interstitial pneumonia. Pulmonary MRI with ultra-short echo time at 192 msec at end of tidal expiration by respiratory 
triggering (left) and thin-section CT at end full inspiration with 1 mm section thickness (right) shows honeycombing in the right lower lobe (black arrow) and reticulation in the 
left lower lobe (white arrow). Although honeycombing was demonstrated with good agreement, reticulation was demonstrated with difference due to different respiratory 
volumes.
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assessment of ventilation and perfusion in patients with COPD 
has also been employed (Appendix E1 [online]) (136).

Only three relatively large-scale MRI studies of COPD 
have been reported: two multicenter trials in Europe, Japan, 
and South Korea (113,132) and a single-center Canadian 
study (137). Comparative studies between 3He and 129Xe in-
dicate similar sensitivity to lung obstruction and emphysema 
(138–140). Clinical trials with multiple institutions using hy-
perpolarized xenon are under way.

Asthma.—Asthma is the most common chronic disease in chil-
dren (141), and it is a leading cause of workplace absence in adults 
(142). Until recently, MRI has played a very limited role in the 
clinical assessment of asthma. However, CT has been used to mea-
sure functional air trapping (143), and the National Institutes of 
Health–funded Severe Asthma Research Program study also high-
lighted the utility of CT in understanding asthma severity (144).

Pulmonary MRI without exogenous contrast material, such 
as Fourier decomposition MRI (28), provides a method to 

tests (126). Pulmonary microvascular blood flow at MRI was 
associated with signs of endothelial injury, including elevated 
endothelial microparticles and reduced circulating endothelial 
cells (127,128). In 79 participants, perfusion MRI was more 
sensitive to abnormalities among smokers with normal pulmo-
nary function (129), and it helped distinguish patients among 
three phenotypes (130). In 15 patients with COPD, perfusion 
MRI helped evaluate acute exacerbations and postexacerba-
tion improvements, showing that perfusion defects resolved af-
ter therapy (131). In a multicenter study of 160 patients with 
COPD, oxygen-enhanced pulmonary MRI showed functional 
derangements that distinguished patients similar to clinical se-
verity staging (132). UTE MRI also showed reproducible signal 
intensity changes in the lung parenchyma, which were related to 
pulmonary function tests and CT measurements such as relative 
area of the density histogram less than or equal to –950 HU and 
forced expiratory volume in 1 second/forced vital capacity (133). 
Fluorine 19 MRI in patients with COPD has also been piloted 
with promising results (134,135). A noncontrast method for the 

Figure 9: Images in 61-year-old man with mild to moderate chronic obstructive pulmonary disease (COPD) (top) and 61-year-
old woman with severe COPD (bottom). Images on left are MRI ventilation scans coregistered to CT scans, and images on right are 
corresponding center slice MRI apparent diffusion coefficient maps. MRI ventilation (cyan) was volume rendered in three dimensions 
and coregistered to center-slice thoracic CT scan (gray scale) and three-dimensional rendered airway tree (yellow). The patient with 
mild to moderate COPD had forced expiratory volume in 1 second of 55% percentage predicted, ventilation defect percentage of 
29%, and apparent diffusion coefficient of 0.36 cm2/sec. The patient with severe COPD had forced expiratory volume in 1 second 
of 30% percentage predicted, ventilation defect percentage of 36%, and apparent diffusion coefficient of 0.54 cm2/sec.
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and honeycombing have 
different T2 relaxation 
times in nonspecific in-
terstitial pneumonia or 
usual interstitial pneu-
monia (165). MR elas-
tography has revealed 
increased lung stiffness 
in 15 patients with inter-
stitial lung disease (166).

Oxygen-enhanced 
proton MRI of inter-
stitial lung disease has 
shown enhancement 
changes in patients 
versus healthy controls 
(167–170). Hyperpolar-
ized xenon MRI spectros-
copy revealed re duced 
signal from red blood 
cells compared with tissue 
in idiopathic pulmonary 
fibrosis versus healthy 
volunteers (171). Hy-
perpolarized xenon 

MRI showed good correlations with pulmonary function tests 
(172). In patients with idiopathic pulmonary fibrosis, the ratio 
of hyperpolarized xenon MRI red blood cells–to–tissue barrier is 
more sensitive to change than forced vital capacity and diffus-
ing capacity of the lung for carbon monoxide (173), although 
hyperpolarized xenon and hyperpolarized helium apparent diffu-
sion coefficients are more sensitive to acinar microstructural 
changes that correlate with the Likert fibrosis score derived 
from CT (138,174). Early and late T1 contrast enhancement 
features may help differentiate inflammation from fibrotic-pre-
dominant pathology, as shown in a biopsy study that classified 
26 patients with usual interstitial pneumonia as inflammation 
or fibrosis predominant (175).

Cost-effectiveness and Timeliness of Lung MRI
MRI is associated with cost, complexity, and difficulty in read-
ing. Few publications are available regarding (a) cost-effective-
ness data to support clinical use, to our knowledge, and (b) MRI 
timeliness (ie, time to complete the examination after ordering) 
compared with CT. More studies on the cost-effectiveness of 
pulmonary MRI and its timeliness are needed, particularly for 
children with chronic disease in need of longitudinal follow-up 
imaging (eg, patients with CF and adults in lung cancer screen-
ing programs) (176). Recently, Allen et al (177) reported that 
MRI has a near equivalent life expectancy benefit and superior 
cost-effectiveness compared with low-dose CT in a Markov 
model of lung cancer screening. To our knowledge, no publica-
tions show data of the timeliness of lung MRI examinations.

Summary and Future Directions
Until recently, the clinical use of pulmonary MRI has been 
limited. However, advanced methods are expanding oppor-

generate ventilation and perfusion maps in patients with asthma 
(145). In a similar manner, multivolume acquisitions (146), fol-
lowed by quantification of signal intensities related to inhalation, 
provide ventilation heterogeneity maps in asthma.

Although MRI with intravenous gadolinium-based contrast 
agents has been used to generate quantitative lung perfusion in-
formation for direct comparison with pulmonary function test 
measurements, the vast majority of asthma MRI studies involve 
inhaled gas contrast hyperpolarized helium and hyperpolarized 
xenon methods that were pioneered by the team at the University 
of Virginia. These investigators provided the initial evidence of 
the utility of hyperpolarized helium ventilation MRI in patients 
with asthma (147–150). They were also the first to describe the 
spatial persistence of hyperpolarized helium MRI ventilation 
abnormalities in asthma (151,152) and the clinical relevance of 
these hyperpolarized helium MRI measures (153,154). Others 
have evaluated hyperpolarized helium MRI response to metha-
choline challenge and other triggers such as exercise (155) and 
treatment (148,156, 157). These studies focused on ventilation 
quantification, which can be automated by coregistration of 
ventilation volume and the thoracic cavity volume (158). More 
recently, the relationships of hyperpolarized MRI ventilation ab-
normalities with asthma control (159), eosinophilic inflamma-
tion (160), and mucus plugs (161) were ascertained, all of which 
are relevant for the clinical management of asthma (Fig 10).

Interstitial lung disease.—Recent developments in UTE hy-
drogen 1 MRI (12) have shown comparable diagnostic accu-
racy to CT (109,162,163) in interstitial lung disease (Fig 8). 
T1 values of fibrotic lung parenchyma are longer than those 
of emphysematous lung parenchyma and are influenced by 
lung volume (164), while ground-glass opacity, reticulation, 

Figure 10:  MRI ventilation image coregistered to CT scan in 41-year-old woman with asthma. MRI ventilation (cyan) was 
volume rendered in three dimensions and coregistered to center-slice thoracic CT scan (gray scale) and three-dimensional rendered 
airway tree (yellow). Zooming in on left lower lobe MRI ventilation defect with three-dimensional rendered pulmonary vasculature 
(red) reveals vascular pruning within ventilation defects. In this patient, the forced expiratory volume in 1 second was 60% percent-
age predicted, and ventilation defect percentage was 15%.
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tunities to exploit the advantages of MRI for the evaluation 
of several common lung disorders. MRI helps visualize lung 
structural and functional abnormalities without ionizing radia-
tion, making state-of-the-art MRI techniques an alternative to 
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the potential of MRI to improve patient care, vendors and de-
velopers must ensure that more effective pulse sequences and 
measurements are more widely and easily available. The cur-
rent roadblocks that stymie widespread adoption need to be 
addressed.

Although CT will remain the principal imaging tool for rou-
tine pulmonary imaging examinations, including in the pediatric 
population, MRI has either emerged as the clinical standard or 
has shown enormous potential to change clinical care for certain 
patients and indications. In addition, the unique information 
these MRI tools provide can be used for mechanistic, hypothesis-
driven research in patients and preclinical models. Prospective and 
randomized multicenter trials should be conducted to directly 
compare MRI with conventional clinical approaches and imaging 
for the most promising or most burdensome pulmonary diseases. 
The results of such trials, along with continued improvements in 
pulmonary MRI methods, will likely necessitate future updated 
modifications in the recommendations proposed here.
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