Expanding Applications of Pulmonary MRI in the Clinical Evaluation of Lung Disorders: Fleischner Society Position Paper

Hirotu Hatabu, MD, PhD* • Yoshiharu Olmo, MD, PhD** • Warren B. Gefter, MD • Grace Parraga, PhD • Bruno Madore, PhD • Kyung Soo Lee, MD, PhD • Talissa A. Altes, MD • David A. Lynch, MB, BCb • John R. Mayo, MD • Joon Beom Seo, MD, PhD • Jim M. Wild, PhD • Edwin J. van Beek, MD, PhD • Mark L. Schiebler, MD** • Hans-Ulrich Kauczor, MD** • For the Fleischner Society

From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Columbia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.).

Received March 27, 2020; revision requested May 20; revision received July 2; accepted July 15. Address correspondence to H.H. (e-mail: hhatabu@partners.org).

Confl icts of interest are listed at the end of this article.

Pulmonary MRI provides structural and quantitative functional images of the lungs without ionizing radiation, but it has had limited clinical use due to low signal intensity from the lung parenchyma. The lack of radiation makes pulmonary MRI an ideal modality for pediatric examinations, pregnant women, and patients requiring serial and longitudinal follow-up. Fortunately, recent MRI techniques, including ultrashort echo time and zero echo time, are expanding clinical opportunities for pulmonary MRI. With the use of multicoil parallel acquisitions and acceleration methods, these techniques make pulmonary MRI practical for evaluating lung parenchymal and pulmonary vascular diseases. The purpose of this Fleischner Society position paper is to familiarize radiologists and other interested clinicians with these advances in pulmonary MRI and to stratify the Society recommendations for the clinical use of pulmonary MRI into three categories: (a) suggested for current clinical use, (b) promising but requiring further validation or regulatory approval, and (c) appropriate for research investigations. This position paper also provides recommendations for vendors and infrastructure, identifies methods for hypothesis-driven research, and suggests opportunities for prospective, randomized multicenter trials to investigate and validate lung MRI methods.

©RSNA, 2020

Online supplemental material is available for this article.

Pulmonary MRI has had limited clinical use for patients with lung disease, especially when compared with radiography, CT, and PET/CT. However, MRI has become practical in many countries due to advances in MRI pulse sequences, multicoil parallel imaging, and acceleration methods, along with the increased (but not universal) availability of postprocessing software. Recently, ultrashort echo time (UTE) and zero echo time proton MRI have extended the use of conventional or anatomic proton MRI for clinical examinations, and inhaled-gas methods have opened up avenues for functional lung imaging. The transition to MRI from radiography-based methods has been driven by the fact that MRI does not impart ionizing radiation, which is particularly important in younger patients with chronic illness (eg, cystic fibrosis [CF]), for young and pregnant women, or for those patients requiring extensive longitudinal follow-up (eg, severe asthma).

The purpose of this Fleischner Society position paper is to familiarize our community with recent advances in pulmonary MRI and to provide a consensus expert opinion regarding appropriate clinical indications for this modality. These opinions were initially endorsed in consensus among the writing committee members, following which the manuscript was endorsed by the Society members at large and was approved by the Fleischner Society Publication Development and Oversight Committee and the Fleischner Executive Committee before submission to Radiology.

Common clinical indications for pulmonary MRI were reviewed by members of the writing committee and have been divided into three groups: (a) group 1 indications are suggested for current clinical use of pulmonary MRI (four or more publications from multiple institutions with clinical studies of more than 100 patients); (b) group 2 indications are promising but require further validation or regulatory approval (two to three publications with fewer than 100 patients, those that use methods requiring further confirmation or regulatory approval, such as hyperpolarized gases); and (c) group 3 indications are appropriate for research investigations (clinical studies not meeting the above criteria or limited to preclinical research) (Table 1).

Background, Brief History of MRI of Lung, and Emergence of UTE and Zero Echo Time MRI Pulse Sequences

In the 1970s, Paul Lauterbur developed the first MRI scanner, for which he jointly received the 2003 Nobel Prize in Medicine or Physiology with Peter Mansfield.
Much later, in 1996, Cutillo remarked that “lung imaging is a latecomer in magnetic resonance imaging” (1). The conceptual framework of the lung’s air and soft-tissue interfaces and its three-dimensional structure were investigated in the 1980s (2). The large difference in magnetic susceptibility between air and lung parenchyma results in broad frequency distributions and phase dispersion within voxels, causing an incoherent proton spectrum, noise after image reconstruction, and short T2* (3–6). Moreover, the gap in susceptibility between lung parenchyma and the chest wall manifests as a dark line perpendicular to the frequency-encoding direction. In 1991, the phenomenon of susceptibility effects was described in detail, and potential solutions were proposed using projection reconstruction MRI with UTE (7–9). But this solution required more than 2 decades of hardware and software improvements before successful clinical implementation was possible (10–12). Clinical MRI of the lung has since been pursued using spin-echo (SE) and gradient-echo (GRE) sequences with short echo time and half-Fourier single-shot fast SE sequences (13–15). MRI of the pulmonary vasculature is possible using electrocardiographic gating, surface coils, and cine GRE MRI (16,17).

In 1994, ventilation MRI using hyperpolarized xenon 129 (129Xe) was first reported in small animals (18). In 1996, hyperpolarized helium 3 (3He) MRI was pioneered in healthy volunteers and participants with lung disease (19,20), and contrast material–enhanced perfusion MRI emerged (21). This was followed by reports using perfusion parametric mapping with three-dimensional imaging and breath holding (22–24). Dynamic oxygen-enhanced proton ventilation MRI was also introduced into the routine clinical management and long-term monitoring of patients with CF as the standard of care. Similar to CT, proton MRI provides morphologic information with respect to mucus distribution, bronchiectasis, inflammatory airway wall thickening, consolidation, and atelectasis, and it depicts disease activity from birth (29–31) (Fig 2). Inspiratory and expiratory three-dimensional GRE MRI reveals air trapping (32) as a low spatial resolution radiation-free alternative to inspiratory and expiratory CT; although steady-state free precession methods can be used to distinguish mucus from airway wall thickening (33). An MRI scoring system, similar to CT scoring systems, may help grade disease severity (34). MRI can also reveal perfusion abnormalities caused by hypoxic pulmonary vasoconstriction with high sensitivity that reflects ventilation–perfusion impairment due to airway obstruction (Euler-Liljestrand reflex) (35). MRI perfusion defects can reveal even a small airway (<1 mm in diameter) obstruction, which is difficult if not impossible to detect using CT. For example, CT demonstrated only 20% of potentially detectable perfusion abnormalities in young patients with CF (30). In addition, MRI perfusion defects correlated with the multiple breath wash-out lung clearance index measurement in young children and adolescents (36). Also, two single-center studies showed that mucus plugging, consolidation, and perfusion abnormalities were increased in pulmonary exacerbations of CF and reversed after antibiotic therapy (30,36,37). A multicenter MRI study in young children with CF also showed that lung clearance index values of access, and superb natural contrast and spatial resolution of the lung parenchyma. In contradistinction to CT, pulmonary MRI has a longer acquisition time with sensitivity to respiratory motion and is affected by the lung’s lower proton density and aforementioned susceptibility effects from air and soft-tissue interfaces.

Nevertheless, pulmonary MRI is poised to become a primary clinical imaging modality due to the development of UTE and zero echo time sequences, which have been “game changers” for pulmonary MRI. These sequences provide a higher signal-to-noise ratio from the lung’s relatively short T2*. Their evolution, from longer to shorter echo times, is described in Figure 1 and explained in detail in Appendix E1 (online).

Clinical Indications for Pulmonary MRI

Data Support Current Clinical Application (Suggested for Current Clinical Use)

Evaluation of CF.—CF manifests with pulmonary pathologic findings from birth. Pulmonary MRI can demonstrate the presence of bronchiectasis and mucus plugging in CF; but imaging is challenging because of the great range in patient age as well as disease severity in this population, due to the different classes of CF transmembrane conductance regulator mutations and exogenous factors such as bacterial colonization. These variations in CF result in different degrees of disease severity, but therapeutic agents, including modulators and potentiators, may extend life expectancy for individuals with CF.

To our knowledge, only in Germany has proton MRI been introduced into the routine clinical management and long-term monitoring of patients with CF as the standard of care. Similar to CT, proton MRI provides morphologic information with respect to mucus distribution, bronchiectasis, inflammatory airway wall thickening, consolidation, and atelectasis, and it depicts disease activity from birth (29–31) (Fig 2). Inspiratory and expiratory three-dimensional GRE MRI reveals air trapping (32) as a low spatial resolution radiation-free alternative to inspiratory and expiratory CT; although steady-state free precession methods can be used to distinguish mucus from airway wall thickening (33). An MRI scoring system, similar to CT scoring systems, may help grade disease severity (34). MRI can also reveal perfusion abnormalities caused by hypoxic pulmonary vasoconstriction with high sensitivity that reflects ventilation–perfusion impairment due to airway obstruction (Euler-Liljestrand reflex) (35). MRI perfusion defects can reveal even a small airway (<1 mm in diameter) obstruction, which is difficult if not impossible to detect using CT. For example, CT demonstrated only 20% of potentially detectable perfusion abnormalities in young patients with CF (30). In addition, MRI perfusion defects correlated with the multiple breath wash-out lung clearance index measurement in young children and adolescents (36). Also, two single-center studies showed that mucus plugging, consolidation, and perfusion abnormalities were increased in pulmonary exacerbations of CF and reversed after antibiotic therapy (30,36,37). A multicenter MRI study in young children with CF also showed that lung clearance index values...
had a moderate to strong correlation with the MRI scores (38). Hyperpolarized gas MRI with 3He reveals ventilation abnormalities with a high sensitivity in patients with CF (39, 40) who have normal spirometry and normal CT (41). Quantification of ventilation defects is feasible and may be useful for monitoring therapy effectiveness (42). This, in combination with the fact that hyperpolarized 3He is more sensitive to lung function decline than pulmonary function tests (43), highlights its value in helping detect very early lung disease. Preliminary therapy studies using hyperpolarized 3He ventilation as an end point showed response to a CF transmembrane conductance regulator gene potentiator in parallel with changes in forced expiratory volume in 1 second (39), but very few studies support MRI use in very young children, to our knowledge (44). MRI with hyperpolarized 129Xe is less costly than hyperpolarized 3He and shows promise for clinical use in specialist CF centers (37, 45–48), including evaluation of treatment responses and correlation with pulmonary function measurements such as lung clearance index. Unenhanced MRI methods for perfusion and/or ventilation imaging (eg, arterial spin labeling, echo time–dependent mapping of T1 relaxation times, and Fourier decomposition MRI) also provide alternatives for CF lung ventilation and perfusion measurements (49–51). The next area of research will need to focus on how MRI results change patient outcomes (eg, life expectancy, hospitalization length of stay, cost of care) compared with CT and its cost effectiveness.

In conclusion, proton-based pulmonary MRI for longitudinal assessment of patients with CF is the current clinical standard in Germany, and data support its more widespread use in patients with CF. The use of hyperpolarized gas remains an important research tool, awaiting regulatory approval for clinical use beyond the United Kingdom.

Lung cancer and lung nodule characterization

Early lung cancer detection and pulmonary nodule characterization are important challenges for radiology. Although CT serves as the clinical workhorse, MRI plays a role in specific clinical scenarios. Various MRI techniques, such as SE sequences, including short inversion time inversion recovery, turbo SE sequence, and GRE sequences, yield detection rates ranging from 26% to 96% (52–55). Recently, three-dimensional GRE sequences with UTE (echo time, less than 200 μsec) enabled a detection rate of greater than 90% for nonsolid, part-solid, and solid nodules ranging from 4 to 29 mm in diameter, thus challenging thin-section CT in nodule detection (54). In a recent study, the potential of MRI as a screening tool for lung cancer was compared with low-dose CT (56) for 224 lung cancer screening participants with nodules of 4 mm or greater; patients were then assigned a Lung Imaging Reporting and Data System category. All eight cancers were accurately depicted with MRI. The Lung Imaging Reporting and Data System score was overestimated with MRI in one patient for category 4A, two patients for category 3, and five patients for category 2 nodules. The authors concluded that MRI was comparable to low-dose CT in a lung cancer screening program (56). The use of UTE pulse sequences has improved the detection of small lung nodules at MRI (57). This free-breathing method allows for the better delineation of lung parenchymal structure than routine breath-hold GRE techniques (57).

After detection, characterizing the potential for malignancy is pivotal. Numerous MRI sequences have been evaluated for pulmonary nodule characterization (58). Currently, diffusion-weighted (DW) MRI is considered the most useful, with a meta-analysis pooled sensitivity and specificity of 83% and 80%, respectively, in the differentiation between malignant and benign lesions (59). Some studies have shown that dynamic contrast-enhanced MRI has greater specificity and accuracy than PET/CT (60, 61) (Fig 3). When DW MRI and fluorine 18 fluorodeoxyglucose (FDG) PET/CT were compared in a meta-analysis for diagnosis of the same nodule, DW MRI yielded an area under the receiver operating characteristic curve of 0.93 (95% confidence interval [CI]: 0.90, 0.95) versus 0.86 (95% CI: 0.83, 0.89) for FDG PET/CT (P = .001). This meta-analysis also showed a diagnostic odds ratio of 50 (95% CI: 19, 132) for DW MRI, which was superior to that of PET/CT (odds ratio = 15; 95% CI: 7, 32; P = .006) (62). Thus, current data show that DW MRI outperforms FDG PET/CT in the characterization of solitary pulmonary nodules.

Currently, CT and FDG PET/CT are used for lung cancer staging (tumor, node, metastasis or TNM system), and MRI is rarely employed, and typically only for selected problem solving. Although MRI had originally been proposed as superior to CT for T factor evaluations (63–66), short inversion time inversion-recovery turbo SE MRI and/or DW MRI are as helpful as PET/CT for N factor evaluation in non–small cell lung cancer (NSCLC) (67–79). Short inversion time inversion-recovery turbo SE MRI is also more sensitive and accurate than DW MRI and PET/CT (75). When both MRI and PET/CT data are available, inclusive criteria (positive for nodal metastasis either at MRI or at PET/CT) improve the sensitivity for detecting nodal metastasis compared with PET/CT alone, and they may decrease unnecessary open thoracotomy, mediastinoscopy, or endobronchial US (80). Another meta-analysis identified better diagnostic performance for MRI compared with FDG PET/CT.

Table 1: Summary of Clinical Indications for Pulmonary MRI

<table>
<thead>
<tr>
<th>Data Support</th>
<th>Current Clinical Application</th>
<th>Data Promising: Further Validation or Regulatory Approval Required</th>
<th>Investigational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cystic fibrosis</td>
<td>Pulmonary embolism</td>
<td>Chronic obstructive pulmonary disease</td>
<td></td>
</tr>
<tr>
<td>Lung cancer staging</td>
<td>Pulmonary parenchymal abnormalities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung nodule characterization</td>
<td></td>
<td>Asthma</td>
<td></td>
</tr>
<tr>
<td>Pulmonary hypertension</td>
<td>Lung nodule detection</td>
<td>Interstitial lung disease</td>
<td></td>
</tr>
</tbody>
</table>
Expanding Applications of Pulmonary MRI in the Clinical Evaluation of Lung Disorders

Expanding Applications of Pulmonary MRI in the Clinical Evaluation of Lung Disorders

Currently, lung cancer staging may use both brain MRI and whole-body PET/CT. With available whole-body MRI data, the coregistered PET/MRI may serve as a staging tool. NSCLC was correctly upstaged in 37 of 143 patients (26%) in the PET/MRI group compared with 26 of 120 patients (22%) in the PET/CT plus brain MRI group (95% CI: –6%, 15%; \(P = .43 \)), which was an insignificant difference (82). Integrated (simultaneous, rather than registered) PET/MRI can also be used as a possible adjunct to FDG PET/CT for clinical NSCLC staging with comparable staging performance (83,84).

In conclusion, studies support the utility of MRI for the characterization of known lung nodules and lung cancer staging as potential alternatives to PET/CT. Although UTE results are promising for lung nodule detection, confirmatory studies are required.

Pulmonary hypertension.—The European Society of Cardiology and European Respiratory Society issued a recent consensus statement on the diagnosis and treatment of pulmonary hypertension (85,86). Dynamic contrast-enhanced lung perfusion MRI has similar sensitivity and specificity to both planar scintigraphy (87) and SPECT (88) in its ability to screen for chronic thromboembolic pulmonary hypertension. The right ventricle is not well designed for acute pressure overload and decompensates into cor pulmonale after exposure to chronic pressure (and/or volume) overload (89). The findings of septal flattening, delayed contrast enhancement of the septal insertions, and an elevation in the right ventricular end diastolic volume index have prognostic value in pulmonary hypertension (90–93). Quantitative contrast-enhanced MR angiography is useful for the assessment of the severity of pulmonary hypertension and the longitudinal assessment of therapy ef-

Figure 1: Diagram illustrates the race toward shorter echo time (TE) values. The evolution of echo times has involved regular MRI pulse sequences with, A–C, short TE setting, followed by, D, E, specially designed ultrashort echo time and, F, zero echo time sequences. Echo time is defined as time between excitation of magnetization and sampling of central k-space region. With typical MRI hardware, a minimum amount of time is required to switch between radiofrequency (RF) transmission (radiofrequency pulses) and radiofrequency reception (readout window), called \(\Delta \) here and depicted greatly exaggerated in C–F. \(\Delta \) can be a limiting factor in how small echo times can get, and a \(\Delta \) of 5 \(\mu \)sec might be considered typical. Due to finite width of radiofrequency pulse and of \(\Delta \), a central region in k-space cannot be sampled by zero echo time pulse sequences; this is depicted in F using a small slivery sphere at origin of radial pattern. GRE = gradient echo, PF = partial Fourier, PR = projection reconstruction, 3D = three-dimensional.

on a per-node and per-patient basis (79). Thus, the current evidence supports the broader clinical use of MRI for TNM staging in patients with NSCLC (Fig 4). Tables 2 and 3 show reported diagnostic performances of dedicated MRI for T and N factor assessments in patients with NSCLC.

Whole-body MRI also provides acceptable accuracy and efficacy for NSCLC staging compared with whole-body PET/CT. Although whole-body MRI is more useful for depicting brain and hepatic metastases, PET/CT is more useful for the detection of lymph node and soft-tissue metastases (81).
of the smaller pulmonary arterial branches. Bright-blood, steady-state free precession imaging can also be used to delineate thrombus in the major pulmonary vessels in patients with chronic thromboembolic pulmonary hypertension (97) and to reveal decreased flow in the pulmonary artery due to pulmonary hypertension (98). The distensibility (relative area change) in the pulmonary artery is predictive of outcomes in patients with pulmonary hypertension (97,99), while the right ventricular end diastolic volume index and pulmonary artery area predict survival (100), as confirmed with meta-analysis (101).

In conclusion, strong evidence supports the current clinical use of cardiopulmonary MRI in patients with pulmonary hypertension.

Data Promising but Requiring Further Validation or Regulatory Approval

Pulmonary embolism.—Since 2004, pulmonary contrast-enhanced MR angiography has revealed both the direct signs of pulmonary embolism within pulmonary arteries and lung perfusion using parallel imaging techniques, time-resolved, or four-dimensional contrast-enhanced MR angiography (Fig E2 [online]) (102,103). This technique can be considered as an alternative to CT angiography for patients presenting with signs and symptoms of pulmonary embolism. In the clinical setting of suspected pulmonary embolism, single-center results for the primary use of MR angiography for the diagnosis of pulmonary embolism in 675 patients at low to intermediate risk showed patient outcomes using MR angiography as the primary diagnostic test were similar to CT angiography at 6 months of follow-up (104). Important technical developments since the Prospective Investigation of Pulmonary Embolism Diagnosis III

Figure 2: Typical constellation of imaging findings in an adolescent female patient with cystic fibrosis. A. Contrast-enhanced T1-weighted image shows mucus-filled bronchoceles (arrow) dominant in upper lobes and superior segments of lower lobes. B. Fat-saturated T2-weighted image best depicts mucus plugging (arrow). C. Maximum intensity projection of contrast-enhanced T1-weighted imaging shows tree-in-bud pattern of small airways disease (circles). D. Contrast-enhanced T1-weighted imaging may help differentiate airway wall inflammation (anterior black arrowhead) from mucus (posterior black arrowhead) by different signal intensities. E. Subtraction map from dynamic contrast-enhanced MR perfusion reveals perfusion abnormalities (arrowheads). F. Contrast-enhanced MR angiography shows dilated bronchial arteries (arrowhead).
Expanding Applications of Pulmonary MRI in the Clinical Evaluation of Lung Disorders

Figure 3: Images in 82-year-old man with invasive adenocarcinoma in right upper lobe. A, Thin-section CT scan with 1-mm-thick sections (left), pulmonary MRI scan with ultrashort echo time at 110 μsec and 1-mm-thick sections (middle), and fluorine 18 fluorodeoxyglucose (FDG) PET/CT scan with 2.5-mm-thick sections (right). CT and MRI scans show solid nodule with notch. This nodule demonstrates high FDG uptake on PET/CT scan. CT and MRI scans also show bullae and emphysematous lung surrounding tumor. B, Dynamic first-pass contrast material–enhanced perfusion gradient-echo MRI scans obtained with a 3-T system demonstrate well-enhanced nodule (arrows) in right upper lobe. This nodule shows enhancement from lung parenchymal phase and is well enhanced at systemic circulation phase. t is the time after injection of gadolinium-based contrast agent followed by saline chaser.

Figure 4: Images in 74-year-old man with lung cancer and right hilar and subcarinal lymph node metastases. Fluorine 18 fluorodeoxyglucose (FDG) PET/CT scan (left), short inversion time inversion-recovery turbo fast spin-echo image obtained with a 3-T system (middle), and diffusion-weighted (DW) image obtained with a fast spin-echo sequence from same system (right). PET/CT scan shows high uptake of FDG at right hilar (thin arrow) and subcarinal (thick arrow) lymph nodes. Short inversion time inversion-recovery fast spin-echo image demonstrates right hilar (thin arrow) and subcarinal (thick arrow) lymph nodes as areas of high signal intensity, although DW image shows only subcarinal lymph node (thick arrow) as high signal intensity and cannot visualize right hilar lymph node as high signal intensity (thin arrow). All methods could enable accurate diagnosis of N stage in this patient. In addition, PET/CT and short inversion time inversion-recovery fast spin-echo imaging could enable accurate diagnosis of lymph node metastases on a per-node basis. DW imaging could accurately depict subcarinal lymph node metastasis, but right hilar lymph node was determined to be a false-negative finding.
study have improved the resolution and image quality of the MRI examinations (105). Advances in scanner hardware have resulted in improved interpolated resolution ($0.7 \times 0.7 \times 1.0 \text{ mm vs } 0.5 \times 0.7 \times 1.5 \text{ mm}$ in Prospective Investigation of Pulmonary Em-

Table 2: Reported Diagnostic Performances of T Factor at MRI as Compared with CT

<table>
<thead>
<tr>
<th>Study</th>
<th>Year (T)</th>
<th>Field Strength (T)</th>
<th>Sequence Image Analysis</th>
<th>MRI Accuracy (%)</th>
<th>CT Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Webb et al (63)</td>
<td>1991</td>
<td>0.3 + 1.5</td>
<td>ECG-gated T1-and T2-weighted T0–T4</td>
<td>73</td>
<td>78</td>
</tr>
<tr>
<td>Sakai et al (64)</td>
<td>1997</td>
<td>1.5</td>
<td>Free-breathing cine-GRASS Chest wall invasion</td>
<td>76</td>
<td>68</td>
</tr>
<tr>
<td>Ohno et al (65)</td>
<td>2001</td>
<td>1.5</td>
<td>Dynamic ECG-triggered 3D GRE Tumor invasion of pulmonary vessels</td>
<td>75–88</td>
<td>68–71</td>
</tr>
<tr>
<td>Tang et al (66)</td>
<td>2015</td>
<td>3.0</td>
<td>Breath-hold dynamic CE 2D GRE T stage</td>
<td>82.2</td>
<td>84.4</td>
</tr>
</tbody>
</table>

Note.—CE = contrast enhanced, ECG = electrocardiogram, GRASS = gradient-recalled acquisition in the steady state, GRE = gradient recalled echo, 3D = three-dimensional, 2D = two-dimensional.

Table 3: Diagnostic Performance of N Factor of the TNM Staging System for MRI, CT, and FDG PET/CT

<table>
<thead>
<tr>
<th>Study</th>
<th>Year (T)</th>
<th>Field Strength (T)</th>
<th>Sequence Image Analysis</th>
<th>Reference Standard</th>
<th>MRI Accuracy (%)</th>
<th>CT Accuracy (%)</th>
<th>PET/CT Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Takenaka et al (67)</td>
<td>2002</td>
<td>1.5</td>
<td>ECG-triggered T1-weighted TSE, STIR Histologic findings</td>
<td>95</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Ohno et al (68)</td>
<td>2004</td>
<td>1.5</td>
<td>STIR Histologic findings</td>
<td>89</td>
<td>72</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Ohno et al (69)</td>
<td>2007</td>
<td>1.5</td>
<td>STIR Histologic findings and/or follow-up</td>
<td>87.8 (qualitative), 92.2 (quantitative)</td>
<td>82.6 (qualitative), 83.5 (quantitative)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Hasegawa et al (70)</td>
<td>2008</td>
<td>1.5</td>
<td>DWI Histologic findings</td>
<td>95</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Nomori et al (71)</td>
<td>2008</td>
<td>1.5</td>
<td>DWI Histologic findings and/or follow-up</td>
<td>98</td>
<td>NA</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Morikawa et al (72)</td>
<td>2009</td>
<td>1.5</td>
<td>STIR Histologic findings</td>
<td>84.7 (qualitative), 84.7 (quantitative)</td>
<td>NA</td>
<td>80.3</td>
<td></td>
</tr>
<tr>
<td>Nakayama et al (73)</td>
<td>2010</td>
<td>1.5</td>
<td>DWI Histologic findings</td>
<td>94</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Usuda et al (74)</td>
<td>2011</td>
<td>1.5</td>
<td>T1-weighted SE, T2-weighted FSE, SS EPI SPAIR Histologic findings</td>
<td>81</td>
<td>NA</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Ohno et al (75)</td>
<td>2011</td>
<td>1.5</td>
<td>STIR, DWI Histologic findings</td>
<td>84.4 (qualitative STIR), 82.8 (qualitative DWI), 86.8 (quantitative STIR), 84.4 (quantitative DWI)</td>
<td>NA</td>
<td>83.6 (qualitative), 85.6 (quantitative)</td>
<td></td>
</tr>
<tr>
<td>Ohno et al (76)</td>
<td>2015</td>
<td>3</td>
<td>STIR FASE, EPI DWI, FASE DWI Histologic findings</td>
<td>84.2 (STIR FASE), 76.8 (EPI DWI), 83.2 (FASE DWI)</td>
<td>NA</td>
<td>73.7</td>
<td></td>
</tr>
<tr>
<td>Usuda (77)</td>
<td>2015</td>
<td>1.5</td>
<td>SE T1-weighted, FSE T2-weighted, DWI Histologic findings and/or follow-up</td>
<td>91</td>
<td>NA</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Nomori (78)</td>
<td>2016</td>
<td>1.5</td>
<td>DWI Histologic findings</td>
<td>75</td>
<td>NA</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Peerlings et al (79)</td>
<td>2016</td>
<td>Mainly 1.5</td>
<td>DWI and STIR Meta-analysis</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Note.—DWI = diffusion weighted imaging, ECG = electrocardiogram, EPI = echo-planar imaging, FASE = fast-advantage spin echo, FDG = fluorine 18 fluorodeoxyglucose, FSE = fast spin echo, NA = not applicable, SE = spin echo, SS = single shot, SPAIR = spectral attenuated inversion recovery, STIR = short inversion time inversion recovery.
Expanding Applications of Pulmonary MRI in the Clinical Evaluation of Lung Disorders

bolism Diagnosis III), increased number of slices (140–160 vs 44 [101]), and a lower repetition time (2.9 msec vs 6.6 msec). The software changes also include the use of an auto-calibrating k-space two-dimensional scheme for three-dimensional acquisition (106).

In conclusion, single-center data (n = 675) have shown that pulmonary MR angiography is similar to CT angiography for the primary evaluation of suspected pulmonary embolism. Confirmatory prospective, multicenter, outcomes-based trials comparing pulmonary MR angiography and CT angiography are needed.

Pulmonary parenchymal abnormalities.—Since 2000, advancements in MRI gradient systems and pulse sequences enabled the evaluation of lung parenchyma by using single-shot fast or turbo spin echo with and without half-Fourier acquisition, balanced steady-state free precession, and three-dimensional GRE with UTE less than 200 μsec (12,15,107–109). These techniques can increase the signal-to-noise ratio within the lung parenchyma (15). Steady-state free precession and three-dimensional GRE with UTE emerged for visualization of lung parenchymal structures in the 2010s (12,107–109). When compared with CT, three-dimensional GRE with UTE showed almost perfect agreement for imaging lung nodules or masses, ground-glass opacity, patchy opacity and consolidation, honeycombing and traction bronchiectasis, and substantial agreement in visualizing reticular opacity, emphysema, and bullae (109). Three-dimensional GRE with UTE is equally useful compared with thin-section CT for lung nodule detection and characterization (Figs 6–8) (54,110). Another application of this technique is the quantitative regional T2* measurement of the lung by direct T2* decay at three-dimensional GRE with UTEs for the assessment of lung microstructure and emphysema (111).

In conclusion, several studies suggest MRI may be comparable to CT in the detection of lung nodules, ground-glass opacity, consolidation, honeycombing, traction bronchiectasis, and reticular changes. However, the limited availability and investigational status of UTE proton pulse sequences have curtailed clinical adoption. Evidence from multicenter clinical trials is required for validation.

Investigational (Appropriate for Research Investigations and Mechanistic and Hypothesis-driven Research in Patients or Preclinical Studies)

Chronic obstructive pulmonary disease.—Chronic obstructive pulmonary disease (COPD) is the most common chronic respiratory illness in the world, and it is increasing in prevalence with decidedly poor prognosis and outcomes. Pulmonary function tests and CT currently serve as the established clinical tools for COPD evaluations and large-scale multicenter stud-
Time-resolved hyperpolarized helium MRI was also exploited to directly visualize collateral ventilation in a small group (four of 10) of patients with COPD (120). DW hyperpolarized helium MRI has also helped detect subclinical emphysema in healthy smokers (121,122) with high sensitivity, although hyperpolarized xenon MRI b value acquisition methods can quantify mean alveolar dimensions in COPD (123) (Fig 9).

Quantitative perfusion MRI has also been employed in patients with COPD with correlation to CT and pulmonary function tests (124–128). In 144 participants, pulmonary microvascular blood flow was reduced in mild COPD compared with control participants who were smokers, independent of small airway disease at CT and gas trapping at pulmonary function studies (112). Several smaller COPD studies have employed MRI methods.

The first large-scale multi-institutional study involved a collaboration with the United Kingdom, Germany, and Denmark, the Polarized Helium Imaging of the Lung study (113). This prospective study compared hyperpolarized helium MRI and CT in nearly 200 patients with COPD and never-smokers. Using pulmonary function tests as a reference, regional analysis of hyperpolarized helium MRI and thin-section CT correctly categorized healthy volunteers in 100% and 97% and COPD in 42% and 69%, respectively. The apparent diffusion coefficients of hyperpolarized helium MRI better correlate with diffusing capacity of the lung for carbon monoxide than CT lung density ($r = 0.59$ vs $r = 0.29$) (113). The first evidence of hyperpolarized helium MRI utility in COPD was provided much earlier (114,115), and these findings opened the door to larger studies in patients and in those exposed to secondhand smoke (116). In one pilot hyperpolarized helium MRI study, increased ventilation defects and apparent diffusion coefficients were detected during a 2-year period in patients with COPD in whom forced expiratory volume in 1 second remained unchanged (117), underscoring the sensitivity of MRI to COPD abnormalities. In a larger COPD cohort study, hyperpolarized helium MRI apparent diffusion coefficient values were used to explain ventilation improvements after bronchodilator treatment (118). Moreover, in a comparison of CT, pulmonary function tests, and hyperpolarized helium MRI in a larger COPD cohort, only hyperpolarized helium MRI enabled the prediction of exacerbations in patients with mild to moderate COPD without previous exacerbations (119).

Quantitative perfusion MRI has also been employed in patients with COPD with correlation to CT and pulmonary function tests (124–128). In 144 participants, pulmonary microvascular blood flow was reduced in mild COPD compared with control participants who were smokers, independent of small airway disease at CT and gas trapping at pulmonary function...
Expanding Applications of Pulmonary MRI in the Clinical Evaluation of Lung Disorders

Assessment of ventilation and perfusion in patients with COPD has also been employed (Appendix E1 [online]) (136). Only three relatively large-scale MRI studies of COPD have been reported: two multicenter trials in Europe, Japan, and South Korea (113,132) and a single-center Canadian study (137). Comparative studies between 3He and 129Xe indicate similar sensitivity to lung obstruction and emphysema (138–140). Clinical trials with multiple institutions using hyperpolarized xenon are under way.

Asthma.—Asthma is the most common chronic disease in children (141), and it is a leading cause of workplace absence in adults (142). Until recently, MRI has played a very limited role in the clinical assessment of asthma. However, CT has been used to measure functional air trapping (143), and the National Institutes of Health–funded Severe Asthma Research Program study also highlighted the utility of CT in understanding asthma severity (144).

Pulmonary MRI without exogenous contrast material, such as Fourier decomposition MRI (28), provides a method to assess ventilation and perfusion in patients with COPD. Figure 9: Images in 61-year-old man with mild to moderate chronic obstructive pulmonary disease (COPD) (top) and 61-year-old woman with severe COPD (bottom). Images on left are MRI ventilation scans coregistered to CT scans, and images on right are corresponding center slice MRI apparent diffusion coefficient maps. MRI ventilation (cyan) was volume rendered in three dimensions and coregistered to center-slice thoracic CT scan (gray scale) and three-dimensional rendered airway tree (yellow). The patient with mild to moderate COPD had forced expiratory volume in 1 second of 55% percentage predicted, ventilation defect percentage of 29%, and apparent diffusion coefficient of 0.36 cm²/sec. The patient with severe COPD had forced expiratory volume in 1 second of 30% percentage predicted, ventilation defect percentage of 36%, and apparent diffusion coefficient of 0.54 cm²/sec.
generate ventilation and perfusion maps in patients with asthma (145). In a similar manner, multivolume acquisitions (146), followed by quantification of signal intensities related to inhalation, provide ventilation heterogeneity maps in asthma.

Although MRI with intravenous gadolinium-based contrast agents has been used to generate quantitative lung perfusion information for direct comparison with pulmonary function test measurements, the vast majority of asthma MRI studies involve inhaled gas contrast hyperpolarized helium and hyperpolarized xenon methods that were pioneered by the team at the University of Virginia. These investigators provided the initial evidence of the utility of hyperpolarized helium ventilation MRI in patients with asthma (147–150). They were also the first to describe the spatial persistence of hyperpolarized helium MRI ventilation abnormalities in asthma (151,152) and the clinical relevance of these hyperpolarized helium MRI measures (153,154). Others have evaluated hyperpolarized helium MRI response to methylcholine challenge and other triggers such as exercise (155) and treatment (148,156, 157). These studies focused on ventilation quantification, which can be automated by coregistration of ventilation volume and the thoracic cavity volume (158). More recently, the relationships of hyperpolarized MRI ventilation abnormalities with asthma control (159), eosinophilic inflammation (160), and mucus plugs (161) were ascertained, all of which are relevant for the clinical management of asthma (Fig 10).

Interstitial lung disease.—Recent developments in UTE hydrogen 1 MRI (12) have shown comparable diagnostic accuracy to CT (109,162,163) in interstitial lung disease (Fig 8). T1 values of fibrotic lung parenchyma are longer than those of emphysematous lung parenchyma and are influenced by lung volume (164), while ground-glass opacity, reticulation, and honeycombing have different T2 relaxation times in nonspecific interstitial pneumonia or usual interstitial pneumonia (165). MR elastography has revealed increased lung stiffness in 15 patients with interstitial lung disease (166).

Oxygen-enhanced proton MRI of interstitial lung disease has shown enhancement changes in patients versus healthy controls (167–170). Hyperpolarized xenon MRI spectroscopy revealed reduced signal from red blood cells compared with tissue in idiopathic pulmonary fibrosis versus healthy volunteers (171). Hyperpolarized xenon MRI showed good correlations with pulmonary function tests (172). In patients with idiopathic pulmonary fibrosis, the ratio of hyperpolarized xenon MRI red blood cells–to–tissue barrier is more sensitive to change than forced vital capacity and diffusing capacity of the lung for carbon monoxide (173), although hyperpolarized xenon and hyperpolarized helium apparent diffusion coefficients are more sensitive to acinar microstructural changes that correlate with the Likert fibrosis score derived from CT (138,174). Early and late T1 contrast enhancement features may help differentiate inflammation from fibrotic-predominant pathology, as shown in a biopsy study that classified 26 patients with usual interstitial pneumonia as inflammation or fibrosis predominant (175).

Cost-effectiveness and Timeliness of Lung MRI

MRI is associated with cost, complexity, and difficulty in reading. Few publications are available regarding (a) cost-effectiveness data to support clinical use, to our knowledge, and (b) MRI timelines (ie, time to complete the examination after ordering) compared with CT. More studies on the cost-effectiveness of pulmonary MRI and its timeliness are needed, particularly for children with chronic disease in need of longitudinal follow-up imaging (eg, patients with CF and adults in lung cancer screening programs) (176). Recently, Allen et al (177) reported that MRI has a near equivalent life expectancy benefit and superior cost-effectiveness compared with low-dose CT in a Markov model of lung cancer screening. To our knowledge, no publications show data of the timeliness of lung MRI examinations.

Summary and Future Directions

Until recently, the clinical use of pulmonary MRI has been limited. However, advanced methods are expanding oppor-

Figure 10: MRI ventilation image coregistered to CT scan in 41-year-old woman with asthma. MRI ventilation (cyan) was volume rendered in three dimensions and coregistered to center-slice thoracic CT scan (gray scale) and three-dimensional rendered airway tree (yellow). Zooming in on left lower lobe MRI ventilation defect with three-dimensional rendered pulmonary vasculature (red) reveals vascular pruning within ventilation defects. In this patient, the forced expiratory volume in 1 second was 60% age predicted, and ventilation defect percentage was 15%.
tunities to exploit the advantages of MRI for the evaluation of several common lung disorders. MRI helps visualize lung structural and functional abnormalities without ionizing radiation, making state-of-the-art MRI techniques an alternative to CT, particularly for pediatric patients, women of childbearing age, pregnant women, and patients requiring serial follow-up imaging where radiation burden is an issue. A clinically relevant example is the use of proton MRI in the serial imaging of children with CF. However, proton MRI pulse sequences are not universally accessible beyond specialist or research centers, so they remain underused for lung imaging. To maximize the potential of MRI to improve patient care, vendors and developers must ensure that more effective pulse sequences and measurements are more widely and easily available. The current roadblocks that stymie widespread adoption need to be addressed.

Although CT will remain the principal imaging tool for routine pulmonary imaging examinations, including in the pediatric population, MRI has either emerged as the clinical standard or has shown enormous potential to change clinical care for certain patients and indications. In addition, the unique information these MRI tools provide can be used for mechanistic, hypothesis-driven research in patients and preclinical models. Prospective and randomized multicenter trials should be conducted to directly compare MRI with conventional clinical approaches and imaging for the most promising or most burdensome pulmonary diseases. The results of such trials, along with continued improvements in pulmonary MRI methods, will likely necessitate future updated modifications in the recommendations proposed here.

Acknowledgments: We thank the librarians Myung Ah Shim, BA, and Jaero Park, MS, for their dedicated support in manuscript formatting. Both librarians work at the Samsung Medical Information and Media Services of Samsung Medical Center in Seoul, South Korea.

Author contributions: Guarantors of integrity of entire study, H.H., Y.O.; study concepts/study design or data acquisition or data analysis/interpretation, all authors; manuscript drafting or manuscript revision for important intellectual content, all authors; approval of final version of submitted manuscript, all authors; agrees to ensure any questions related to the work are appropriately resolved, all authors; literature research, H.H., Y.O., W.B.G., G.P., B.M., K.S.L., J.R.M., J.M.W., E.J.R.v.B., M.L.S., H.U.K.; clinical studies, H.H., J.R.M., H.U.K.; experimental studies, J.R.M.; statistical analysis, XXX; and manuscript editing, H.H., Y.O., W.B.G., G.P., B.M., K.S.L., T.A.A., J.R.M., J.B.S., J.M.W., E.J.R.v.B., M.L.S., H.U.K.

K.S.L. developed and implemented the systematic search strategy. D.A.L. advised on the systematic search. All authors participated in the literature search. H.H., Y.O., W.B.G., G.P., B.M., K.S.L., D.A.L., J.M.W., E.J.R.v.B., M.L.S., and H.U.K. created the first draft of the Review. All authors critically reviewed the manuscript and approved the final version, taking accountability for the work. The Document Development and Oversight Committee and Executive Committee of the Fleischner Society approved the manuscript before submission to Radiology.

Disclosures of Conflicts of Interest: H.H. Activities related to the present article: disclosed no relevant relationships. Activities not related to the present article: is a consultant for Mitsubishi Chemical; has grants/grants pending with Canon Medical and Konica Minolta; receives payment from Canon Medical for serving on medical advisory board. Other relationships: disclosed no relevant relationships.

W.B.G. Activities related to the present article: disclosed no relevant relationships. Activities not related to the present article: disclosed no relevant relationships.

Y.O. Activities related to the present article: institution received research grant from Konica Medical Systems. Activities not related to the present article: has grants/grants pending with Daiichi Sankyo. Other relationships: disclosed no relevant relationships.

G.P. Activities related to the present article: disclosed no relevant relationships.

B.M. Activities related to the present article: disclosed no relevant relationships.

Activities not related to the present article: has a consultancy agreement with Milli-Kelvin Technologies; has grants/grants pending; has grants/ pending; has grants/pending; has grants/pending.

References

Expanding Applications of Pulmonary MRI in the Clinical Evaluation of Lung Disorders

